Planeta Marte













  Marte nos ha fascinado desde siempre como ningun otro planeta. En un principio fueron las observaciones de Percival Lowell (1855-1916), quien intuyó ver «canalizacioneses» sobre la superficie marciana, lo que hacía alvergar evidencias de una avanzada civilización. Marte siempre ha despertado nuestra curiosidad y ha sido objeto de intensas especulaciones sobre la posibilidad de vida allí. La silueta que dibuja Marte en el cielo nocturno es inconfundible por su intenso color rojizo. Es el último de los cuatro planetas terrestres del Sistema Solar y no siempre podremos verlo con claridad, ya que su distancia de la Tierra varía, entre los 55.000.000 y 400.000.000 de kms, por lo que en los momentos de máxima distancia a la tierra, apenas se hará visible en el cielo. Forma parte de los llamados planetas telúricos (de naturaleza rocosa, como la Tierra) y es el planeta interior más alejado del Sol. Forma parte de los planetas superiores a la Tierra, que son aquellos que nunca pasan entre el Sol y la Tierra. Es, en muchos aspectos, el más parecido a nestra Tierra. Aunque en apariencia podría parecer un planeta muerto, no lo es. Sus campos de dunas siguen siendo mecidos por el viento marciano, sus casquetes polares cambian con las estaciones e incluso parece que hay algunos pequeños flujos estacionales de agua. Tiene forma ligeramente elipsoidal, con un diámetro ecuatorial de 6794 km y polar de 6750 km. Medidas micrométricas muy precisas han mostrado un achatamiento de 0,01, tres veces mayor que el de la Tierra. A causa de este achatamiento, el eje de rotación está afectado por una lenta precesión debida a la atracción del Sol sobre el abultamiento ecuatorial del planeta. La precesión lunar, que en la Tierra es dos veces mayor que la solar, no tiene su equivalente en Marte. Con este diámetro, su volumen es de 15 centésimas el terrestre y su masa solamente de 11 centésimas.   En consecuencia, la densidad es inferior a la de la Tierra:    3,94 en relación con el agua. Un cuerpo transportado a Marte pesaría 1/3 de su peso en la Tierra, debido a la    poca fuerza gravitatoria. Marte ha sido uno de los astros    más visitados por sondas no tripuladas. La primera en    orbitarlo, fue Estados Unidos, con la Mariner 4 en 1965.    El primer amartizaje en la superficie marciana lo llevo a    cabo la Urss en 1971, pero el módulo Mars 3, apenas    emitió unos segundos y unas pocas señales. Hubo que    esperar cuatro años hasta los amartizajes de los vikind I    y II, de Estados unidos, que resultaron un exito y fueron    operativas varios años. Gracias a las fotos enviadas por    estas sondas, descubrimos que la superficie del planeta,    se parece mucho al de algunos desiertos de la Tierra, con    una muy fina atmósfera compuesta mayoritariamente por    dióxido de carbono. Se cree que tiene un núcleo de unos 1.700 km de radio, un manto similar al terrestre con una corteza de 35-70 km de espesor. Marte presenta algunas de las formaciones geológicas más espectaculares que conocemos en el Sistema Solar. Destacan el Vallis Marineris, un inmenso cañón de 4.000 km de longitud y de 2 a 7 km de profundidad; Hellas Planitia, un cráter de 2.000 km de diámetro; y el Monte Olimpo, un inmenso volcán de 24 km de altitud y 500 km de diámetro en su base. A su lado, nuestro Everest queda muy pequeño. La exploración de Marte se retomó con la misión del Mars Pathfinder en 1997, que logró hacer llegar al planeta un pequeño robot (un Rover) que exploró la superficie marciana y nos envió datos sobre las rocas. En 2004 llegaron a Marte dos robots más, Spirit y Opportunity, que enviaron imágenes del paisaje marciano. Uno de sus principales objetivos es investigar la posible presencia de microorganismos que soportarían condiciones extremas, o las evidencias de vida en el pasado. Los ultimos ingenios llegados a la superfici de marte, La Phenix que hayó agua helada y la Curiosity, todo un super laboratorio móvil. Es el mayor artefacto que ha pisado suelo marciano y esta equipado con las tenologías mas novedosas. Se espera de el pueda desentrañar el misterio de la vida en marte si la hay. No obstante, gran parte de los datos que se están obteniendo se deben a las tres sondas que orbitan Marte: Mars Global Surveyor, Mars Odissey y Mars Express. Todos estos ingenios estan preparando y allanando el camino para un próxima misión huma a Marte, que nos hará soñar y cuya huella, se convertira en otro gran paso para la humanidad.

Observación de la Tierra

Vista desde Marte por los futuros astronautas, la Tierra sería un magnífico lucero azulino y tan brillante como Júpiter, por lo menos durante los períodos favorables (conjunciones inferiores de la Tierra), ya que nuestro globo presentará, visto desde Marte, las mismas fases que Venus vista desde la Tierra. También, al igual que Venus y Mercurio, la Tierra es un astro alternativamente matutino y vespertino. Con un telescopio instalado en Marte podrían apreciarse el espectáculo resultante de la conjugación de los movimientos de la Tierra y de la Luna, así como de la combinación de las fases de ambos astros: paso de la media luna sobre la mitad oscura del disco terrestre; paso del sistema Tierra-Luna ante el disco solar durante los eclipses.


Rotacion

Se conoce con exactitud lo que tarda la rotación de Marte debido a que las manchas que se observan en su superficie, oscuras y bien delimitadas, son excelentes puntos de referencia. Fueron observadas por primera vez en 1659 por Christiaan Huygens que asignó a su rotación la duración de un día. En 1666, Giovanni Cassini la fijó en 24 h 40 min, valor muy aproximado al verdadero. Trescientos años de observaciones de Marte han dado por resultado establecer el valor de 24 h 37 min 22,7 s para el día sideral (el periodo de rotación de la Tierra es de 23 h 56 min 4,1 s). Marte rota en sentido antihorario, al igual que la Tierra.4 De la duración del día sideral se deduce que el día solar tiene en Marte una duración de 24 h 39 min 35,3 s. El día solar medio o tiempo entre dos pasos consecutivos del Sol medio por el meridiano del lugar, dura 24 h 41 min 18,6 s. El día solar en Marte tiene, igual que el de la Tierra, una duración variable, lo cual se debe a que los planetas siguen órbitas elípticas alrededor del Sol que no se recorren con uniformidad. No obstante, en Marte la variación es mayor por su elevada excentricidad. Para mayor comodidad operativa, los responsables de las misiones norteamericanas de exploración de Marte mediante sondas robóticas han decidido unilateralmente dar al día marciano el nombre de sol, pese a tener otros significados en otros idiomas ("suelo" en francés; o el nombre de nuestra estrella en español).

Traslación

El año marciano dura 687 días terrestres o 668.6 soles. Un calendario marciano podría constar de dos años de 668 días por cada tres años de 669 días.

Geología

La ciencia que estudia la superficie de Marte se llama areografía (no confundir con aerografía), nombre que proviene de Ares (dios de la guerra entre los griegos). Marte es un planeta notablemente más pequeño que la Tierra. Sus principales características, en proporción con las del globo terrestre, son las siguientes: diámetro 53%, superficie 28%, masa 11%. Como los océanos cubren alrededor del 70% de la superficie terrestre y Marte carece de mares, ambos planetas poseen aproximadamente la misma cantidad de superficie pisable. La superficie de Marte presenta características morfológicas tanto de la Tierra como de la Luna: cráteres de impacto, campos de lava, volcanes, cauces secos de ríos y dunas de; arena. Su composición es fundamentalmente basalto volcánico con un alto contenido en óxidos de hierro que proporcionan el característico color rojo de la superficie. Por su naturaleza, se asemeja a la limonita, óxido de hierro muy hidratado. Así como en las cortezas de la Tierra y de la Luna predominan los silicatos y los aluminatos, en el suelo de Marte son preponderantes los ferrosilicatos. Sus tres constituyentes principales son, por orden de abundancia, el oxígeno, el silicio y el hierro. Contiene: 20,8% de sílice 13,5% de hierro, 5% de aluminio, 3,8% de calcio, y también titanio y otros componentes menores. Desde la Tierra, mediante telescopios, se observan unas manchas oscuras y; brillantes que no se corresponden a accidentes topográficos sino que aparecen si el   terreno está cubierto de polvo oscuro (manchas de albedo). Éstas pueden cambiar   lentamente cuando el viento arrastra el polvo. La mancha oscura más característica es   Syrtis Major, una pendiente menor del 1% y sin nada resaltable. La superficie de Marte   presenta también unas regiones brillantes de color naranja rojizo, que reciben el nombre   de desiertos, y que se extienden por las tres cuartas partes de la superficie del planeta,   dándole esa coloración rojiza característica. Estos desiertos en realidad se asemejan   más a un inmenso pedregal, ya que el suelo se halla cubierto de piedras, cantos y   bloques. Un enorme escalón, cercano al ecuador, divide a Marte en dos regiones   claramente diferenciadas: un norte llano, joven y profundo y un sur alto, viejo y escarpado, con cráteres similares a las regiones altas de la Luna. En contraste, el hemisferio norte tiene llanuras mucho más jóvenes, y con una historia más compleja. Parece haber una brusca elevación de varios kilómetros en el límite. Las razones de esta dicotomía global son desconocidas. Hay cráteres de impacto distribuidos por todo Marte, pero en el hemisferio sur hay una vieja altiplanicie de lava basáltica semejante a los mares de la Luna, sembrada de cráteres de tipo lunar. Sin embargo el aspecto general del paisaje marciano difiere al que presenta nuestro satélite como consecuencia de la existencia de atmósfera. En concreto, el viento cargado de partículas sólidas produce una ablación que, en el curso de los tiempos geológicos, ha arrasado muchos cráteres. Éstos son, por consiguiente, mucho menos numerosos que en la Luna y la mayor parte de ellos tienen las murallas más o menos desgastadas por la erosión. Por otra parte, los enormes volúmenes de polvo arrastrados por el viento cubren los cráteres menores, las anfractuosidades del terreno y otros accidentes poco importantes del relieve. Entre los cráteres de impacto destacados del hemisferio sur está la cuenca de impacto Hellas Planitia, con 6 km de profundidad y 2000 km de diámetro. Muchos de los cráteres de impacto más recientes tienen una morfología que sugiere que la superficie estaba húmeda o llena de barro cuando ocurrió el impacto. El campo magnético marciano es muy débil, con un valor de unas 2 milésimas del terrestre y polaridad invertida respecto a la de la Tierra.

Geografía de Marciana

La superficie de Marte conserva las huellas de grandes cataclismos que no tienen equivalente en la Tierra: Una característica del hemisferio norte, es la existencia de un enorme abultamiento que contiene el complejo volcánico de Tharsis. En él se encuentra el Monte Olimpo, el mayor volcán del Sistema Solar. Tiene una altura de 25 km (más de dos veces y media la altura del Everest sobre un globo mucho más pequeño que el de la Tierra) y su base tiene una anchura de 600 km. Las coladas de lava han creado un zócalo cuyo borde forma un acantilado de 6 km de altura. Hay que añadir la gran estructura colapsada de Alba Patera. Las áreas volcánicas ocupan el 10% de la superficie del planeta. Algunos cráteres muestran señales de reciente actividad y tienen lava petrificada en sus laderas. A pesar de estas evidencias, no fue hasta mayo de 2007 cuando el Spirit, descubrió, con un grado alto de certeza, el primer depósito volcánico signo de una antigua actividad volcánica en la zona denominada Home Plate, (una zona con lecho rocoso de unos dos metros de altura y fundamentalmente basáltica, que debió formarse debido a flujos de lava en contacto con el agua líquida), situada en la base interior del cráter Gusev. Una de las mejores pruebas es la que los investigadores llaman "bomb sag" (la marca de la bomba). Cuando se encuentran la lava y el agua, la explosión lanza trozos de roca por el aire. Uno de esos trozos que explotan en el aire vuelve a caer y se encaja en depósitos más blandos.

Valle Marineris

Cercano al Ecuador y con una longitud de 2.700 km, una anchura de hasta 500 km y una profundidad de entre 2 y 7 km, Valles Marineris es un cañón que deja pequeño al Cañón del Colorado. Se formó por el hundimiento del terreno a causa de la formación del abultamiento de Tharsis. Hay una clara evidencia de erosión en varios lugares de Marte tanto por el viento como por el agua. Existen en la superficie largos valles sinuosos que recuerdan lechos de ríos (actualmente secos pues el agua líquida no puede existir en la superficie del planeta en las actuales condiciones atmosféricas). Esos inmensos valles pueden ser el resultado de fracturas a lo largo de las cuales han corrido raudales de lava y, más tarde, de agua. La superficie del planeta conserva verdaderas redes hidrográficas, hoy secas, con sus valles sinuosos entallados por las aguas de los ríos, sus afluentes, sus brazos, separados por bancos de aluviones que han subsistido hasta nuestros días. Todos estos detalles de la superficie sugieren un pasado con otras condiciones ambientales en las que el agua causó estos lechos mediante inundaciones catastróficas. Algunos sugieren la existencia, en un pasado remoto, de lagos e incluso de un vasto océano en la región boreal del planeta. Todo parece indicar que fue hace unos 4.000 millones de años y por un breve período, en la denominada era Noeica. Al igual que la Luna y Mercurio, Marte no presenta tectónica de placas activa, como la Tierra. No hay evidencias de movimientos horizontales recientes en la superficie tales como las montañas por plegamiento tan comunes ha detectado en varias regiones del planeta extensos campos magnéticos de baja intensidad. Este hallazgo inesperado de un probable campo magnético global, activo en el pasado y hoy desaparecido, puede tener interesantes implicaciones para la estructura interior del planeta. Aproximación a la imagen de colores reales, tomada por el Mars Exploration Rover Opportunity, muestra la vista del cráter Victoria desde Cabo Verde. Fue capturada durante un período de tres semanas, desde el 16 de octubre hasta el 6 de noviembre de 2006. Recientemente, estudios realizados con ayuda de las sondas Mars Reconnaissance Orbiter y Mars Global Surveyor han mostrado que muy posiblemente el hemisferio norte de Marte es una enorme cuenca de impacto de forma elíptica conocida cómo Cuenca Borealis de 8500 kilómetros de diámetro que cubre un 40% de la superficie del planeta -la mayor del Sistema Solar, superando con mucho a la Cuenca Aitken de la Luna- que pudo haberse formado hace 3900 millones de años por el impacto de un objeto de 2000 kilómetros de diámetro. Posteriormente a la formación de dicha cuenca se formaron volcanes gigantes a lo largo de su borde, que han hecho difícil su identificación.

Satelites de Marte

El astrónomo Johannes Kepler señaló a principios del siglo XVII que Marte debía tener dos satélites mas tarde serian descubiertos por el astrónomo estadounidense Asaph Hall en 1877, y fueron bautizados por él, dándole los nombres de los dos hijos que en la mitología griega acompañaban al dios Marte: Fobos (miedo) y Deimos (terror). Aunque son muy pequeños y están demasiado próximos al brillante disco del planeta, ambos pueden ser capturados con telescopios de aficionado (a partir de los 20 cm de abertura) por medio de cámaras CCD. La opinión generalizada es que estas dos 'lunas' son irregulares y se cree que fueron capturados por su gravedad, del cercano cinturón de asteroides y ahora vagaban a través de su trayectoria orbital. Su tamaño y su densidad es similar a muchos otros meteoritos. Fobos orbita Marte cada 7 horas y 39 minutos , mientras que Diemos, casi 9.000 kilómetros más lejos, lleva 30 horas y 18 minutos en orbitar el planeta. Phobos, se está moviendo lentamente hacia Marte y se espera que se bloquee allí en unos 30 millones años. Desde la superficie de Marte, Deimos, el más lejano y pequeño sale por el este como la Luna. Sin embargo, Fobos, más grande y cercano, se mueve alrededor del planeta más rápido de lo que el mismo planeta rota. Por este motivo aparece en el occidente, se mueve comparativamente, en forma rápida a través del cielo (en 4 horas 15 minutos o menos) y se pone al este, aproximadamente dos veces por cada día marciano (cada 11 horas y 6 minutos).

Órbitas

Nombre Imagen Diámetro (km) Masa (kg) Distancia a Marte (km) Periodo orbital (h) Fobos 22.2 km (27×21.6×18.8) 1.08×1016 9377 km 7,66 Deimos 12.6 km (10×12×16) 2×1015 23460 km 30,35 Un posible fin para los satélites de Marte es que Phobos, al estar tan cerca del planeta, como ya hemos dicho, llegará a colisionar con Marte y Deimos se alejará del planeta y será un asteroide individual, hasta que caiga en algún planeta, se dirija al Sol, o vague eternamente por el vacío del Espacio Exterior.


Clima de Marte

El clima de Marte es más extremo que el que podemos encontrar en la Tierra, pues es mucho más frío y con una variabilidad de temperaturas muy grande. Además, tormentas de polvo a escala planetaria originados por fuertes vientos lo azotan frecuentemente.

Temperaturas

Sobre las temperaturas que reinan en Marte, todavía no se dispone de datos suficientes que permitan conocer su evolución a lo largo del año marciano en las diferentes latitudes y, mucho menos, las particularidades regionales.1 Por hallarse Marte mucho más lejos del Sol que la Tierra, sus climas son más fríos, y tanto más por cuanto la atmósfera, al ser tan tenue, retiene poco calor: de ahí que la diferencia entre las temperaturas diurnas y nocturnas sea más pronunciada que en nuestro planeta. A ello contribuye también la baja conductividad térmica del suelo marciano. La duración del día y de la noche en Marte, es prácticamente la misma que en la Tierra, de 24 h y media aproximadamente. La temperatura en la superficie depende de la latitud y presenta variaciones estacionales. La temperatura media superficial es de unos 218 K (-55 °C).2 La variación diurna de las temperaturas es muy elevada como corresponde a una atmósfera tan tenue. Las máximas diurnas, en el ecuador y en verano, pueden alcanzar los 20 °C o más, mientras las máximas nocturnas pueden alcanzar fácilmente -80 °C. Ahí ocurre el fenómeno que a la máxima diurna, en el lado solano de un peñasco se registre 20 °C; pero en su sombra, la temperatura fácilmente llegue a los -50 °C. En los casquetes polares, en invierno las temperaturas pueden bajar hasta -143 °C.3 En una de esas ocasiones4 Marte se hallaba bastante cercano al Sol y entonces se registró en el ecuador, en pleno verano, la temperatura de 27 ºC. En 1976, Marte se hallaba, por el contrario, a su máxima distancia del Sol cuando llegaron al planeta las sondas Viking. A pesar de hallarse el hemisferio en verano, la máxima temperatura diurna registrada fue de -13 ºC (a las 15 ) y la mínima de –86 ºC (a las 6, antes de la salida del Sol). Por su parte, la segunda Viking se posó en la latitud de 47,89ºN y midió allí, también en pleno verano, temperaturas máximas y mínimas que, en promedio, fueron respectivamente de -38 y –89 ºC.

Tormentas de polvo

Enormes tormentas de polvo, que persisten durante semanas e incluso meses, oscureciendo todo el planeta pueden surgir de repente, aunque son más frecuentes tras el perihelio del planeta y en el hemisferio Sur, cuando allí es el final de la primavera, están causadas por vientos de más de 150 km/h. Así como en la Tierra un viento de 50 a 60 km/h basta para levantar nubes de polvo, en Marte, dada la ínfima densidad del aire, sólo un vendaval de unos 200 km/h puede producir el mismo efecto. Dichas tormentas pueden alcanzar dimensiones planetarias. Tienen su origen en la diferencia de energía del Sol que recibe el planeta en el afelio y en el perihelio. Cuando Marte se encuentra en las cercanías del perihelio de su  órbita, la temperatura se eleva en el hemisferio Sur por ser  finales de primavera y por el mayor acercamiento al Sol, lo  que causa que el suelo pierda su humedad. En ciertas  regiones, especialmente entre Noachis y Hellas, se  desencadena entonces una violenta tempestad local que,  arranca del suelo seco imponentes masas de polvo. Este,  al ser muy fino, se eleva a grandes altitudes y, en unas  semanas, cubre no sólo todo un hemisferio sino incluso  casi la totalidad del planeta. El polvo en suspensión en la  atmósfera provoca una neblina amarilla que oscurece los  accidentes más característicos del planeta. Al interferir la  entrada de energía solar, las temperaturas máximas  disminuyen, pero a su vez actúa como una manta que impide la disipación del calor, por lo que las temperaturas mínimas aumentan. En consecuencia la oscilación térmica diurna disminuye drásticamente. Así ocurrió en 1971, imposibilitando durante cierto tiempo las observaciones que debían efectuar las cuatro sondas (Mars 2, Mars 3 soviéticas y dos Mariner estadounidense). Esas tormentas de polvo explican los cambios de color que afectan al disco marciano visto desde la Tierra y que tanto habían intrigado a los astrónomos durante más de un siglo. Durante un año marciano, parte del dióxido de carbono (CO2) de la atmósfera, se congela en el hemisferio donde es invierno, o se sublima del polo a la atmósfera cuando es verano. En consecuencia la presión atmósferica tiene una grán variación anual.

Las estaciones en Marte

Artículo principal: Estaciones marcianas. Al igual que en la Tierra, el ecuador marciano está inclinado respecto al plano de la órbita un ángulo de 25º,19.7 Ambos planos se cortan señalando una dirección que se llama punto Aries (Vernal) en la Tierra o punto Vernal de Marte cuando la órbita corta ascendentemente el ecuador del planeta. Ambos puntos se toman como origen de las longitudes solares (aerocéntricas, en honor al dios Ares).

La primavera comienza en el hemisferio Norte en el equinoccio de primavera cuando el Sol atraviesa el punto Vernal pasando del hemisferio Sur al Norte (Ls=0 y creciendo). En el caso de Marte esto tiene también un sentido climático. Los días y las noches duran igual y comienza la primavera en el hemisferio Norte. Esta dura hasta que LS=90º solsticio de verano en que el día tiene una duración máxima en el hemisferio Norte y mínima en el Sur. Análogamente, Ls = 90°, 180°, y 270° indican para el hemisferio Norte el solsticio de verano, equinoccio otoñal, y el solsticio invernal, respectivamente mientras que en el hemisferio Sur es al revés. Por ser la duración del año marciano aproximadamente doble que el terrestre también lo es la duración de las estaciones. La diferencia entre sus duraciones es mayor porque la excentricidad de la órbita marciana es mucho mayor que la terrestre.

Estación Duración en Marte Durac. Tierra
hemisferio boreal hemisferio austral Soles Días Días
invierno
verano
154
158
89,1
primavera
otoño
194
199
92,9
verano
invierno
178
183
93,6
otoño
primavera
143
147
89,7

He aquí la duración de las cuatro estaciones en Marte.

La comparación con las estaciones terrestres muestra que, así como la duración de éstas difiere a lo sumo en 4,5 días, en Marte, debido a la gran excentricidad de la órbita, la diferencia llega a ser primeramente de 51 soles. Actualmente el hemisferio Norte goza de un clima más benigno que el hemisferio Sur.9 La razón es evidente: el hemisferio Norte tiene otoños (143 días) e inviernos (154 días) cortos y además cuando el Sol está en el perihelio lo cual dada la excentricidad de la órbita del planeta, hace que sean más benignos. Además la primavera (194 días) y el verano (178 días) son largos, pero estando el Sol en el afelio son más fríos que los del hemisferio Sur. Para el hemisferio Sur la situación es la inversa. Hay pues una compensación parcial entre ambos hemisferios debido a que las estaciones de menos duración tienen lugar estando el planeta en el perihelio y entonces recibe del Sol más luz y calor. Debido a la retrogradación del punto Vernal y al avance del perihelio, la situación se va decantando cada vez más. En 2.940 años terrestres el perihelio de Marte se alineará al solsticio de invierno.10 Carl Sagan propuso en 1971, para conciliar la evidente erosión hídrica con la actual escasez de vapor de agua, la teoría del "largo invierno".[cita requerida] Con la alineación del perihelio al solsticio de invierno, existirá para el hemisferio Norte, cortos inviernos y muy benignos (por su proximidad al perihelio) y largos veranos. Al revés en el hemisferio Sur. Ello provocaría que el extenso y grueso casquete polar Norte, sea transferido a través de la atmósfera, al casquete polar Sur. En la operación, la mayor parte de los hielos de agua y dióxido de carbono (CO2) se encontrarían en forma de vapor en la atmósfera, produciendo un efecto invernadero. Se elevaría la temperatura superficial, aumentaría la presión y durante unos pocos miles de años se interrumpiría el "largo invierno" para dar lugar a una "corta primavera". Al cabo de 27.850 años la situación se invertiría.


Cambio climático

Observaciones recientes de la superficie marciana, han mostrado que su clima podría ser mucho más dinámico de lo que se había esperado, con una importante disminución reciente del casquete sur, observado entre 2003 y 2007, que indicaría un calentamiento continuado del clima marciano durante los últimos años.11 Este efecto se retroalimenta ya que el casquete polar sur de Marte está formado mayoritariamente por dióxido de carbono (CO2), de modo que su evaporación aumenta el débil efecto invernadero de la atmósfera marciana y contribuye a incrementar aún más las temperaturas. En un estudio publicado en la revista Nature en 2007[cita requerida] de la radiación reflejada por la superficie de Marte, se indica que entre las décadas de 1970 y 1990 la temperatura media del planeta habría aumentado 0,65 °C. El equipo de Lori Fenton comparó mapas termales obtenidos por la misión Viking de la NASA en los años 70 con mapas obtenidos dos décadas después por la Global Surveyor. Vieron que grandes zonas de la superficie se han oscurecido o iluminado en las últimas tres décadas. Esto parece deberse a un cambio del albedo de la superficie causado por los vientos. Las variaciones de dióxido de carbono en la atmósfera marciana conforme a su condensación y evaporación en los polos, originan cambios en la presión atmosférica superficial en cada estación, siendo las presiones menores en invierno y mayores en el verano del hemisferio sur.

Metano en la atmósfera

Tres proyectos separados han detectado la presencia de gas metano en la atmósfera de Marte.Se calcula que este gas es destruido en unos 4 años y que su concentración desigual en la atmósfera sugiere la presencia de una fuente activa de producción.Un análisis adicional revela que la producción total de metano debe ser de unas 150 toneladas por año.17 El origen del metano puede ser de origen geoquímico, volcánico o biológico, sin embargo, ninguna de estas fuentes se ha detectado, lo cual expande el misterio de su continua producción.

Explorando Marte

Desde 1964, se comenzó a estudiar directamente la historia geofísica de Marte mediante la sonda Mariner 4. Para unos, Marte albergó en un pasado grandes cantidades de agua y tuvo un pasado cálido, con una atmósfera mucho más densa, el agua fluyendo por la superficie y excavando los grandes canales que surcan su superficie. Al calcular la cantidad de agua que había excavado los canales gigantes, los geólogos de la NASA concluyeron que Marte tuvo ríos que empequeñecían a los mayores terrestres. Como unos caudales tan enormes eran imposibles de mantener, se supuso que las riadas habían sido cortas y catastróficas, causadas por acontecimientos excepcionales como erupciones volcánicas o impactos de meteoritos. La orografía de Marte presenta un hemisferio norte que es una gran depresión y donde los partidarios de Marte húmedo sitúan al Oceanus Borealis, un mar cuyo tamaño sería similar al Mar Mediterráneo. El deuterio es un isótopo pesado del hidrógeno, y las moléculas de agua están formadas en una pequeña proporción por deuterio y oxígeno. Su mayor masa le hace más resistente a la evaporación, y por ello se concentra en los residuos líquidos. Al analizar la escasísima agua de la atmósfera marciana, se encontró que el deuterio era cinco veces más abundante que en la Tierra. Esta anomalía, también registrada en Venus, se interpreta como que los dos planetas tenían mucha agua en el pasado pero que acabaron perdiéndola. Hay dos formas de perder agua: los rayos ultravioleta provenientes de la radiación solar, rompen las moléculas de agua, y el hidrógeno se escapa por la parte alta de la atmósfera y más aún en el caso de Marte un planeta de pequeña masa y baja gravedad. La segunda consiste en que el agua se filtraría por el suelo marciano permaneciendo en el subsuelo, retenido por alguna capa impermeable o formando suelo helado o permafrost, por la baja temperatura reinante en el planeta. Obviamente la primer forma es una pérdida definitiva mientras la segunda no y agua puede detectarse mediante el radar Marsis a bordo de la nave europea Mars Express.18 Los recientes descubrimientos del robot de la NASA, Opportunity, en Meridiani Planum avalan la hipótesis de un pasado húmedo.19 20 21 En un planeta desecado deberían abundar los minerales que son inestables en presencia de agua como el olivino que se altera con gran facilidad en presencia de agua, por lo que haberlo encontrado, brinda soporte adicional a un pasado húmedo en Marte.22 Se han encontrado arcillas, pero en cantidades limitadas, lo que es compatible con el flujo de agua reducidos en terrenos muy antiguos. Ello supone que la era de los filosilicatos cuando Marte era un planeta húmedo y en un ambiente alcalino terminó hace 3500 millones de años.8 La abundancia del mineral olivino (típico de los basaltos) ha sido tomada como prueba de que el actual clima seco y helado ha prevalecido desde entonces. La falta de evidencia, hasta el momento, carbonatos en Marte, revela que el dióxido de carbono atmosférico no fue tan abundante para sostener la presencia de agua líquida, ya que el gas debería haber formado otros minerales como el carbonato, además de las arcillas. Estos hallazgos son sorprendentes y para explicar esto es posible que si el dióxido de carbono atmosférico fue abundante como para formar carbonatos, los mismos carbonatos fuesen destruidos por el ambiente ácido del propio planeta. También es posible que el dióxido de carbono nunca existiera en abundancia en la atmósfera temprana de Marte y otro gas de invernadero sería el causante de la formación de agua. Entre éstos podría citarse al dióxido de azufre o al metano que no reaccionan con los minerales. Una tercera posibilidad es que un factor aún desconocido, ayudó a mantener la suficiente presión y temperatura atmosférica para la formación de arcillas.23 Así pues tendríamos en Marte tres eras. Durante los primeros 1000 millones de años un Marte calentado por una atmósfera que contenía gases de efecto invernadero suficientes para que el agua fluyese por la superficie y se formaran arcillas, la era Noeica que sería el anciano reducto de un Marte húmedo y capaz de albergar vida. La segunda era duró de los 3800 a los 3500 millones de años y en ella ocurrió el cambio climático, y la era más reciente y larga que dura casi toda la historia del planeta y que se extiende de los 3500 millones de años a la actualidad con un Marte tal como lo conocemos en la actualidad frío y seco. Recientemente se ha puesto en duda el mecanismo de formación de los barrancos marcianos y que la mayoría de los científicos achacaron a corrientes de agua en el pasado geológico reciente de Marte.Un mecanismo alternativo es que se trata de formaciones secas causadas por el viento y no por agua. En la superficie lunar donde no hay agua hay barrancos lunares muy similares a los encontrados en Marte. La hipótesis del derrumbamiento seco, en la formación de los barrancos marcianos, tiene su mejor ejemplo en el cráter Dawes de 17 km, en la Luna, barrancos similares a los marcianos en estructura y tamaño. En abril de 2005 la Mars Global Surveyor, que lleva nueve años en órbita alrededor de Marte, detectó la formación de barrancos en dunas marcianas, barrancos que no estaban ahí en julio de 2002. El mecanismo de su formación, que excluye el agua, se debe a que el dióxido de carbono congelado atrapado en los granos de arena durante el invierno, se evapora durante la primavera liberando el gas y causando el derrumbe de la arena. En resumen, el paradigma de un Marte húmedo que explicaría los accidentes orográficos de Marte está dejando paso al paradigma de un Marte seco y frío donde el agua ha tenido una importancia mucho más limitada. La NASA lanzó el 12 de agosto de 2005 la sonda Mars Reconnaissance Orbiter, que llegó a la órbita de Marte el 10 de marzo de 2006 y tiene como objetivos principales la búsqueda de agua pasada o presente y el estudio del clima. En 25 de mayo de 2008, la sonda Phoenix aterrizó cerca del polo norte de Marte; su objetivo primario fue desplegar su brazo robótico y hacer prospecciones a diferentes profundidades para examinar el subsuelo, determinar si hubo o pudo haber vida en Marte, caracterizar el clima de Marte, estudio de la geología de Marte, y efectuar estudios de la historia geológica del agua, factor clave para descifrar el pasado de los cambios climáticos del planeta. Hasta el momento su mayor logro fue el 15 de junio de 2008, al encontran agua congelada.

Agua en Marte

El punto de ebullición depende de la presión y si ésta es excesivamente baja, el agua no puede existir en estado líquido. Eso es lo que ocurre en Marte: si ese planeta tuvo abundantes cursos de agua fue porque contaba también con una atmósfera mucho más densa que proporcionaba también temperaturas más elevadas. Al disiparse la mayor parte de esa atmósfera en el espacio, y disminuir así la presión y bajar la temperatura, el agua desapareció de la superficie de Marte. Ahora bien, subsiste en la atmósfera, en estado de vapor, aunque en escasas proporciones, así como en los casquetes polares, constituidos por grandes masas de hielos perpetuos. Todo permite suponer que entre los granos del suelo existe agua congelada, fenómeno que, por lo demás, es común en las regiones muy frías de la Tierra. En torno de ciertos cráteres marcianos se observan unas formaciones en forma de lóbulos cuya formación solamente puede ser explicada admitiendo que el suelo de Marte está congelado. También se dispone de fotografías de otro tipo de accidente del relieve perfectamente explicado por la existencia de un gelisuelo. Se trata de un hundimiento del suelo de cuya depresión parte un cauce seco con la huella de sus brazos separados por bancos de aluviones. Se encuentra también en paredes de cráteres o en valles profundos donde no incide nunca la luz solar, accidentes que parecen barrancos formados por torrentes de agua y los depósitos de tierra y rocas transportados por ellos. Sólo aparecen en latitudes altas del hemisferio Sur. La comparación con la geología terrestre sugiere que se trata de los restos de un suministro superficial de agua similar a un acuífero. De hecho, la sonda Mars Reconnaissance Orbiter ha detectado grandes glaciares enterrados con extensiones de docenas de kilómetros y profundidades del orden de 1 kilómetro, los cuales se extienden desde los acantilados y las laderas de las montañas y que se hallan a latitudes más bajas de lo esperado. Esa misma sonda también ha descubierto que el hemisferio norte de Marte tiene un mayor volumen de agua helada. Otra prueba a favor de la existencia de grandes cantidades de agua en el pasado marciano, en la forma de océanos que cubrían una tercera parte del planeta ha sido dada por el espectrómetro de rayos gamma de la sonda Mars Odyssey, el cual ha delimitado lo que parece ser las líneas de costa de dos antiguos océanos. También subsiste agua marciana en la atmósfera del planeta, aunque en proporción tan ínfima (0,01%) que, de condensarse totalmente sobre la superficie de Marte, formaría sobre ella una película líquida cuyo espesor sería aproximadamente de la centésima parte de un milímetro. A pesar de su escasez, ese vapor de agua participa de un ciclo anual. En Marte, la presión atmosférica es tan baja que el vapor de agua se solidifica en el suelo, en forma de hielo, a la temperatura de –80 °C. Cuando la temperatura se eleva de nuevo por encima de ese límite el hielo se sublima, convirtiéndose en vapor sin pasar por el estado líquido. El análisis de algunas imágenes muestra lo que parecen ser gotas de agua líquida que salpicaron las patas de la sonda Phoenix tras su aterrizaje.

En la actualidad

El 26 de noviembre de 2011 fue lanzada la Mars Science Laboratory (abreviada MSL), conocida como Curiosity. Se trata de una misión espacial que incluye un astromóvil de exploración marciana dirigida por la NASA y que se centra en colocar sobre la superficie marciana un vehículo explorador de tipo rover. Este vehículo será tres veces más pesado y dos veces más grande que los vehículos utilizados en la misión Mars Exploration Rover, que aterrizaron sobre Marte en el año 2004, y portará los intrumentos científicos más avanzados. La comunidad internacional proporcionará algunos de estos instrumentos, y se tiene planeado lanzarlo a través de un cohete Atlas V 541. Una vez aterrizado, el rover tomará docenas de muestras de suelo y polvo rocoso marciano para su análisis. La duración de la misión será de 1 año marciano (1,88 años terrestres), y con un rango de exploración superior a los enviados anteriormente, investigará la capacidad pasada y presente de Marte para alojar vida. El día 6 de agosto de 2012, ocho meses después de su lanzamiento, el Curiosity aterrizó en la superficie de Marte, concretamente en el cráter Gale, tras pasar por los denominados "7 minutos del pánico", periodo de tiempo durante el cual el Curiosity atravesó la atmósfera de Marte y durante los cuales el equipo técnico encargado de supervisar el viaje no pudo hacer nada, debido al retraso de 14 minutos experimentado por las señales emitidas por el rover antes de llegar a la Tierra desde Marte.

                                                                                                                                                                Fuente Wikipedia